80 research outputs found

    Detection of colistin resistance in Pseudomonas aeruginosa using the MALDIxin test on the routine MALDI Biotyper Sirius mass spectrometer

    Get PDF
    Colistin is frequently a last resort treatment for Pseudomonas aeruginosa infections caused by multidrug-resistant (MDR) and extensively drug resistant (XDR) strains, and detection of colistin resistance is essential for the management of infected patients. Therefore, we evaluated the recently developed MALDIxin test for the detection of colistin resistance in Pseudomonas aeruginosa clinical strains using the routine matrix-assisted laser desorption ionization (MALDI) Biotyper Sirius system. The test is based on the detection by mass spectrometry of modified lipid A by the addition of 4-amino-L-arabinose (L-ara4N) molecules on one or two phosphate groups, in strains resistant to colistin. Overproduction of L-Ara4N molecules is mainly due to the constitutive activation of the histidine kinase (PmrB) or the response regulator (PmrA) following an amino-acid substitution in clinical strains. The performance of the test was determined on a panel of 14 colistin-susceptible and 14 colistin-resistant Pseudomonas aeruginosa clinical strains, the reference strain PAO1 and positive control mutants PmrB (V28G), PmrB (D172), PhoQ (D240-247) and ParR (M59I). In comparison with the broth microdilution (BMD) method, all the susceptible strains (n=14) and 8/14 colistin-resistant strains were detected in less than 1 hour, directly on whole bacteria. The remaining resistant strains (n=6) were all detected after a short pre-exposure (4h) to colistin before sample preparation. Validation of the method on a larger panel of strains will be the next step before its use in diagnostics laboratories. Our data showed that the MALDIxin test offers rapid and efficient detection of colistin resistant Pseudomonas aeruginosa and is thus a valuable diagnostics tool to control the spread of these emerging resistant strains

    Mechanisms of intrinsic resistance and acquired susceptibility of Pseudomonas aeruginosa isolated from cystic fibrosis patients to temocillin, a revived antibiotic

    Get PDF
    The β-lactam antibiotic temocillin (6-α-methoxy-ticarcillin) shows stability to most extended spectrum β-lactamases, but is considered inactive against Pseudomonas aeruginosa. Mutations in the MexAB-OprM efflux system, naturally occurring in cystic fibrosis (CF) isolates, have been previously shown to reverse this intrinsic resistance. In the present study, we measured temocillin activity in a large collection (n = 333) of P. aeruginosa CF isolates. 29% of the isolates had MICs ≤ 16 mg/L (proposed clinical breakpoint for temocillin). Mutations were observed in mexA or mexB in isolates for which temocillin MIC was ≤512 mg/L (nucleotide insertions or deletions, premature termination, tandem repeat, nonstop, and missense mutations). A correlation was observed between temocillin MICs and efflux rate of N-phenyl-1-naphthylamine (MexAB-OprM fluorescent substrate) and extracellular exopolysaccharide abundance (contributing to a mucoid phenotype). OpdK or OpdF anion-specific porins expression decreased temocillin MIC by ~1 two-fold dilution only. Contrarily to the common assumption that temocillin is inactive on P. aeruginosa, we show here clinically-exploitable MICs on a non-negligible proportion of CF isolates, explained by a wide diversity of mutations in mexA and/or mexB. In a broader context, this work contributes to increase our understanding of MexAB-OprM functionality and help delineating how antibiotics interact with MexA and MexB

    Vibrationally resolved B 1s photoionization cross section of BF3

    Get PDF
    We present a study of the vibrationally resolved B 1s photoionization cross section of the BF 3 molecule. A combination of high-resolution photoelectron spectroscopy measurements and of state-of-the-art calculations shows the evolution of the photon energy dependence of the cross section from a complete trapping of the photoelectron wave (low energies) to oscillations due to intramolecular scattering. These diffraction patterns allow to access structural information of both the neutral molecule and the core -hole species generated upon photoabsoptio

    Simple scoring system to predict in-hospital mortality after surgery for infective endocarditis

    Get PDF
    BACKGROUND: Aspecific scoring systems are used to predict the risk of death postsurgery in patients with infective endocarditis (IE). The purpose of the present study was both to analyze the risk factors for in-hospital death, which complicates surgery for IE, and to create a mortality risk score based on the results of this analysis. METHODS AND RESULTS: Outcomes of 361 consecutive patients (mean age, 59.1\ub115.4 years) who had undergone surgery for IE in 8 European centers of cardiac surgery were recorded prospectively, and a risk factor analysis (multivariable logistic regression) for in-hospital death was performed. The discriminatory power of a new predictive scoring system was assessed with the receiver operating characteristic curve analysis. Score validation procedures were carried out. Fifty-six (15.5%) patients died postsurgery. BMI >27 kg/m2 (odds ratio [OR], 1.79; P=0.049), estimated glomerular filtration rate 55 mm Hg (OR, 1.78; P=0.032), and critical state (OR, 2.37; P=0.017) were independent predictors of in-hospital death. A scoring system was devised to predict in-hospital death postsurgery for IE (area under the receiver operating characteristic curve, 0.780; 95% CI, 0.734-0.822). The score performed better than 5 of 6 scoring systems for in-hospital death after cardiac surgery that were considered. CONCLUSIONS: A simple scoring system based on risk factors for in-hospital death was specifically created to predict mortality risk postsurgery in patients with IE

    Vibrational branching ratios in the photoelectron spectra of N2 and CO: interference and diffraction effects

    No full text
    We present a detailed account of existing theoretical methods specially designed to provide vibrationally resolved photoionization cross sections of simple molecules within the Born-Oppenheimer approximation, with emphasis on newly developed methods based on density functional theory. The performance of these methods is shown for the case of N 2 and CO photoionization. Particular attention is paid to the region of high photon energies, where the electron wavelength is comparable to the bond length and, therefore, two-center interferences and diffraction are expected to occur. As shown in a recent work [Canton et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 7302-7306], the main experimental difficulty, which is to extract the relatively small diffraction features from the rapidly decreasing cross section, can be easily overcome by determining ratios of vibrationally resolved photoelectron spectra and existing theoretical calculations. From these ratios, one can thus get direct information about the molecular geometry. In this work, results obtained in a wide range of photon energies and for many different molecular orbitals of N 2 and CO are discussed and compared with the available experimental measurements. From this comparison, limitations and further possible improvements of the existing theoretical methods are discussed. The new results presented in the manuscript confirm that the conclusions reported in the above reference are of general validityWe thank Mare Nostrum BSC, Cineca and CCC-UAM for allocation of computer time. Work supported by the MICINN project Nos. FIS2010-15127, ACI2008-0777 and CSD 200700010 (Spain), the ERA-Chemistry project PIM2010EEC00751, the European COST Action CM0702, the Marie Curie ITN CORINF (EU), and the XCHEM Advanced Grant 290853 of the European Research Counci

    Vibrationally-resolved photoelectron angular distributions from randomly-oriented and fixed-in- space N2 and CO molecules

    No full text
    This is an author-created, un-copyedited version of an article published in Journal of physics B: atomic molecular and optical physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0953-4075/45/19/194008Vibrationally resolved photoelectron angular distributions from randomly oriented and fixed-in-space N 2 and CO molecules have been evaluated by using an extension of the static-exchange density functional theory that includes the nuclear motion. Both K-shell and valence-shell photoionization have been considered. Comparison with the experimental data, only available for randomly oriented molecules, is very good. Our predictions for molecular-frame photoelectron angular distributions of N 2 show the signature of electron confinement and coherent two-centre interferences as those previously found in H 2. For CO, they exhibit diffraction patterns associated with the scattering of the ejected electron by the neighbouring atomic centre. The conclusions reported in this work suggest that vibrationally resolved photoelectron angular distributions can be a useful instrument to determine structure parameters in these simple moleculesWe thank Mare Nostrum BSC, Cineca and CCC-UAM for allocation of computer time. Work supported by the MICINN project Nos. FIS2010-15127, ACI2008-0777 and CSD 2007-00010 (Spain), the ERA-Chemistry project PIM2010EEC-00751, the European COST Action CM0702, the Marie Curie ITN CORINF, and the XCHEM Advanced Grant 290853 of the European Research Counci
    • …
    corecore